

UNITED STATES DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration NATIONAL MARINE FISHERIES SERVICE Southeast Regional Office 263 13th Avenue South St. Petersburg, Florida 33701-5505 http://sero.nmfs.noaa.gov

> F/SER31: DMB SER-2017-18392

APR 1 9 2017

Chief, Fort Myers Section Jacksonville District Corps of Engineers Department of the Army 1520 Royal Palm Square Boulevard, Suite 310 Fort Myers, Florida 33919

Ref.: SAJ-2016-02974, Marshall Seawall, Cape Coral, Lee County, Florida

Dear Sir or Madam,

The enclosed Biological Opinion ("Opinion") was prepared by the National Marine Fisheries Service (NMFS) pursuant to Section 7(a)(2) of the Endangered Species Act. The Opinion considers the effects of a proposal by the Jacksonville District of the U.S. Army Corps of Engineers to authorize seawall installation under the authorities of Section 404 of the Clean Water Act and Section 10 of the Rivers and Harbors Act on the following listed species and/or critical habitat: loggerhead (Northwest Atlantic Ocean distinct population segment [DPS]), Kemp's ridley, and green (North and South Atlantic DPSs) sea turtles, smalltooth sawfish, and smalltooth sawfish critical habitat. NMFS concludes that the proposed action is not likely to adversely affect sea turtle species (green, Kemp's ridley, and loggerhead) and smalltooth sawfish. NMFS determined the project is likely to adversely affect, but is not likely to destroy or adversely modify, smalltooth sawfish critical habitat.

Please direct questions regarding this Opinion to Dana M. Bethea, Consultation Biologist, by phone at (727) 209-5974, or by email at Dana.Bethea@noaa.gov.

Sincerely,

For Roy E. Crabtree, Ph.D. Regional Administrator

Enclosures: Biological Opinion

File: 1514-22 F.4

Endangered Species Act - Section 7 Consultation Biological Opinion

Action Agency:

Applicant:

Activity:

Consulting Agency:

U.S. Army Corps of Engineers (USACE), Jacksonville District

Mr. and Mrs. John Marshall

New seawall construction, Cape Coral, Lee County, Florida

National Oceanic and Atmospheric Administration (NOAA), National Marine Fisheries Service (NMFS), Southeast Regional Office, Protected Resources Division, St. Petersburg, Florida

Consultation Number SER-2017-18392

Approved by:

For Roy E. Crabtree, Ph.D., Regional Administrator NMFS, Southeast Regional Office St. Petersburg, Florida

Date Issued:

APRIL 19, 2017

Table of Contents

1	INTRODUCTION	5
2	CONSULTATION HISTORY	5
3	DESCRIPTION OF THE PROPOSED ACTION AND ACTION AREA	5
4	STATUS OF LISTED SPECIES AND CRITICAL HABITAT	7
5	ENVIRONMENTAL BASELINE	18
6	EFFECTS OF THE ACTION ON CRITICAL HABITAT	20
7	CUMULATIVE EFFECTS	21
8	INTEGRATION AND SYNTHESIS	21
9	CONCLUSION	27
10	INCIDENTAL TAKE STATEMENT	28
11	CONSERVATION RECOMMENDATIONS	28
12	REINITIATION OF CONSULTATION	28
13	LITERATURE CITED	29

List of Figures

Figure 1. Image showing the Marshall Seawall project site location in the North Spreader	
Waterway in Cape Coral, Lee County, Florida (©2016 Google)	7
Figure 2. Map of smalltooth sawfish critical habitat –CHEU 10)
Figure 3. Diagram A depicts a cross section of a historically dredged channel/canal within the	
boundaries of the critical habitat units that has not been maintained. Diagram B depicts the	
typical cross section of a maintenance dredged channel/canal. Diagram C depicts a cross section	l
of a maintained dredged channel/canal after sea level rise of > 1 ft 14	4
Figure 4. From left to right: current shoreline, + 3.5 in (+ 9 cm); + 18.5 in (+ 47 cm); and + 38.9	7
in (+ 99 cm) sea level rise by 2060 10	5

List of Tables

Table 1. Effects Determinations for Species the Action Agency or NMFS Believes May H	3e
Affected by the Proposed Action	7
Table 2. Effects Determinations for Designated Critical Habitat Occurring In or Near th	he
Action Area	8
Table 3. Summary of Impacts to the Shallow, Euryhaline Habitat Essential Feature	. 25
Table 4. Summary of Impacts to the Red Mangrove Essential Feature	. 27

Acronyms and Abbreviations

CFR	Code of Federal Regulations
CHEU	Charlotte Harbor Estuary System
CO_2	Carbon Dioxide
DPS	Distinct Population Segment
EFH	Essential Fish Habitat
ESA	Endangered Species Act
FDEP	Florida Department of Environmental Protection
FWRI	Fish and Wildlife Research Institute
GMFMC	Gulf of Mexico Fishery Management Council
IPCC	The Intergovernmental Panel on Climate Change

LAA	Likely to Adversely Affect
MHWL	Mean High Water Line
MLW	Mean Low Water
MLLW	Mean Low Lower Water
NLAA	Not Likely to Adversely Affect
NMFS	National Marine Fisheries Service
NOAA	National Ocean and Atmospheric Association
Opinion	Biological Opinion
RPMs	Reasonable and Prudent Measures
TTIU	Ten Thousand Islands/Everglades Unit
USACE	U.S. Army Corps of Engineers
USFWS	U.S. Fish and Wildlife Service
YOY	Young-of-the-year

Units of Measurement

Temperature	
°F	degrees Fahrenheit
°C	degrees Celsius
Length and A	rea
ac	acre(s)
cm	centimeter(s)
ft	foot/feet
ft^2	square feet
in	inches
km	kilometer(s)
lin ft	linear feet
m	meter(s)
mi	miles
mi ²	square miles

1 INTRODUCTION

Section 7(a)(2) of the Endangered Species Act (ESA) of 1973, as amended (16 U.S.C. § 1531 et seq.), requires that each federal agency ensure that any action authorized, funded, or carried out by such agency is not likely to jeopardize the continued existence of any endangered or threatened species or result in the destruction or adverse modification of critical habitat of such species. Section 7(a)(2) requires federal agencies to consult with the appropriate Secretary on any such action. NMFS and the U.S. Fish and Wildlife Service (USFWS) share responsibilities for administering the ESA.

Consultation is required when a federal action agency determines that a proposed action "may affect" listed species or designated critical habitat. Consultation is concluded after NMFS determines that the action is not likely to adversely affect listed species or critical habitat or issues a Biological Opinion ("Opinion") that identifies whether a proposed action is likely to jeopardize the continued existence of a listed species, or destroy or adversely modify critical habitat. The Opinion states the amount or extent of incidental take of the listed species that may occur, develops measures (i.e., reasonable and prudent measures - RPMs) to reduce the effect of take, and recommends conservation measures to further the recovery of the species. Notably, no incidental destruction or adverse modification of designated critical habitat can be authorized, and thus there are no RPMs—only reasonable and prudent alternatives that must avoid destruction or adverse modification.

This document represents NMFS's Opinion based on our review of impacts associated with the proposed action to issue a permit within Lee County, Florida. This Opinion analyzes the project's effects on threatened and endangered species and designated critical habitat, in accordance with Section 7 of the ESA. We based our Opinion on project information provided by USACE and other sources of information, including the published literature cited herein.

2 CONSULTATION HISTORY

NMFS received a request for formal consultation under Section 7 of the ESA from the USACE in a letter dated January 11, 2017. The USACE determined that the proposed project may affect, but is not likely to adversely affect, sea turtles (green, Kemp's ridley, and loggerhead), smalltooth sawfish, and may affect smalltooth sawfish critical habitat, and requested initiation of formal consultation. We requested additional information regarding smalltooth sawfish critical habitat in the project area on January 31, 2017. We received a final response on February 1, 2017, and initiated consultation that day.

3 DESCRIPTION OF THE PROPOSED ACTION AND ACTION AREA

3.1 Proposed Action

The applicant proposes to construct a new 80 linear foot (lin ft) concrete seawall. The wall be installed 3.25 feet (ft) waterward of the mean high water line (MHWL) and will require approximately 9.48 cubic yards of associated backfill. The applicant proposes to remove approximately 80 lin ft (80 square feet [ft²]) of juvenile red mangroves and 260 ft² of shallow, euryhaline habitat (< 3 ft depth at mean lower low water [MLLW]) (80 lin ft [seawall] x 3.25 ft

[footprint of seawall 3.25 ft waterward of mean high water] = 260 ft^2). Prefabricated, concrete slabs (8-ft-long x 5-ft-tall x 5-ft-wide) will be jetted into place using mechanical equipment from shore. Two return panels will be placed perpendicular to the face of the seawall at the east and west property lines to prevent erosion of backfill material and to eventually join existing seawalls on the east and west property lines. The applicant also proposes to construct a 30-ft x 13-ft cantilevered concrete dock with no in-water components and no mooring for new vessels; this project will be permitted under SAJ-20. In-water construction is expected to take 3 days to complete during daylight hours only. The applicant will comply with NMFS's *Sea Turtle and Smalltooth Sawfish Construction Conditions*, dated March 23, 2006 (enclosed), including the use of turbidity curtains.

3.2 Action Area

The action area is defined by regulation as "all areas to be affected directly or indirectly by the federal action and not merely the immediate area involved in the action" (50 Code of Federal Regulations (CFR) 402.02). As such, the action area includes the areas in which construction will take place, as well as the immediately surrounding areas that may be affected by direct effects (e.g., noise, sedimentation, and removed red mangroves) and indirect effects (e.g., diminished foraging resources over time from loss of red mangroves and shallow, euryhaline habitat) of the proposed action.

The project site is a vacant, single-family lot located at 26.69437°N, 82.06220°W (North American Datum 1983, Cape Coral, Lee County, Florida; Figure 1). The project site has 80 lin ft of unconsolidated property shoreline, consisting of approximately 80 lin ft (80 ft²) of juvenile red mangroves. The area immediately surrounding the project site consists of both developed and undeveloped single-family lots with and without seawall shorelines. Water depths at the current shoreline are approximately 3.5 ft MLLW and the substrate type in the project footprint is described as sandy. The action area for this project includes the waters and submerged lands within Otero Lake, a man-made, residential canal in the North Spreader Waterway that eventually leads to Charlotte Harbor.

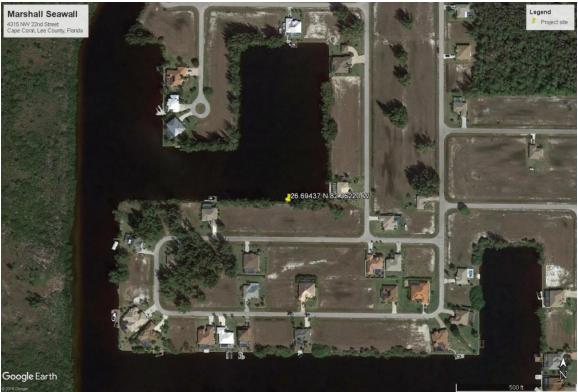


Figure 1. Image showing the Marshall Seawall project site location in the North Spreader Waterway in Cape Coral, Lee County, Florida (©2016 Google).

4 STATUS OF LISTED SPECIES AND CRITICAL HABITAT

Tables 1 and 2 provide the effects determinations for ESA-listed species and critical habitat in the action area.

Table 1. Effects Determinations for Species the Action Agency or NMFS Believes May Be				
Affec	ted by the Proposed Action			

Species	ESA Listing Status	Action Agency Effect Determination	NMFS Effect Determination	
S	ea Turtles			
Green (North and South Atlantic distinct population segment [DPS])	Т	NLAA	NLAA	
Kemp's ridley	Е	NLAA	NLAA	
Loggerhead (Northwest Atlantic Ocean DPS)	Т	NLAA	NLAA	
Fish				
Smalltooth sawfish (U.S. DPS)	Е	NLAA	NLAA	
E = endangered; $T =$ threatened; NLAA = may affect, not likely to adversely affect				

Species	Unit	Action Agency Effect Determination	NMFS Effect Determination	
Smalltooth sawfish	Charlotte Harbor Estuary Unit (CHEU) for protection and restoration of nursery habitat	LAA	LAA, Will not destroy or adversely modify	
LAA = likely to adversely affect				

 Table 2. Effects Determinations for Designated Critical Habitat Occurring In or Near the Action Area

In the following sections, we describe why we believe that smalltooth sawfish and sea turtles (green, Kemp's ridley, and loggerhead) may be present in the action area and may be affected, but are not likely to be adversely affected, by the project, and our belief that smalltooth sawfish critical habitat may be adversely affected, but not destroyed or adversely modified.

4.1 Analysis of Potential Routes of Effects Not Likely to Adversely Affect Listed Species Effects to sea turtles and smalltooth sawfish include the risk of injury from construction equipment during red mangrove removal and seawall installation, which will be discountable due to the species' likelihood and ability to move away from the project site if disturbed. The applicant's implementation of NMFS's *Sea Turtle and Smalltooth Sawfish Construction Conditions* will further reduce the risk by requiring all construction workers to watch for sea turtles and smalltooth sawfish. Operation of any mechanical construction equipment will cease immediately if a sea turtle of smalltooth sawfish is seen within a 50-ft radius of the equipment. Activities will not resume until the protected species has departed the project area of its own volition.

Sea turtles or smalltooth sawfish may be adversely affected by their inability to access the project area for foraging, refuge, and/or nursery habitat, due to their avoidance of construction activities, related noise (discussed below), and physical exclusion from the project area due to blockage by turbidity curtains. Given the project's inland location in 6.9 mi to the nearest unobstructed access point (Matlacha Pass) and lack of seagrass habitat, use of the area by listed sea turtle species is expected to be infrequent and we believe these effects are discountable. Given that juvenile smalltooth sawfish can move through water a few inches deep, there are many locations along the undeveloped shoreline that allow access to this extensive, residential canal system at higher tides; however, we believe these effects will be insignificant given the availability of suitable mangrove habitat near the project area. In addition, these effects to listed sea turtle species and smalltooth sawfish will be temporary, with in-water work lasting a short duration (3 days) during daylight hours only.

The project site has red mangroves and shallow, euryhaline habitat along the shorefront of the property that may be used by sea turtles and smalltooth sawfish as a foraging or refuge habitat. The proposed action required the removal of red mangroves and the loss of shallow, euryhaline habitat to accommodate seawall installation. Permanent loss of red mangroves and shallow,

euryhaline habitat will reduce available foraging and refuge habitat in the area; however, we believe the effect of this loss to juvenile smalltooth sawfish is insignificant because there is ample red mangrove and shallow, euryhaline habitat within the immediate project area (discussed above) and in the surrounding mangrove islands outside the extensive, residential canal network. Whether impacts to the essential features of sawfish critical habitat (i.e., red mangroves and shallow, euryhaline habitat), will appreciably diminish the value of the critical habitat for the conservation this species is discussed in Section 8.

Effects to sea turtles and smalltooth sawfish as a result of noise created by construction activities can physically injure animals in the affected areas or change animal behavior in the affected areas. Injurious effects can occur in 2 ways. First, immediate adverse effects can occur to listed species if a single noise event exceeds the threshold for direct physical injury. Second, effects can result from prolonged exposure to noise levels that exceed the daily cumulative exposure threshold for the animals, and these can constitute adverse effects if animals are exposed to the noise levels for sufficient periods. Behavioral effects can be adverse if such effects prevent animals from migrating, feeding, resting, or reproducing, for example. Our evaluation of effects to listed species as a result of noise created by construction activities is based on the analysis prepared in support of the Opinion for SAJ-82.¹ Based on these noise calculations, the use of a water jet to install prefabricated concrete seawall panels will not result in injurious or behavioral noise effects.

4.2 Status of Critical Habitat Likely to be Adversely Affected

Smalltooth Sawfish Critical Habitat

The U.S. Distinct Population Segment (DPS) of smalltooth sawfish was listed as endangered on April 1, 2003; however, at that time, NMFS was unable to determine critical habitat. After funding additional studies necessary for the identification of specific habitats and environmental features important for the conservation of the species, establishing a smalltooth sawfish recovery team, and reviewing the best scientific data available, NMFS issued a Final Rule (74 Federal Register [FR] 45353; see also 50 CFR § 226.218) to designate critical habitat for the U.S. DPS of smalltooth sawfish on September 2, 2009. The critical habitat consists of 2 units located along the southwestern coast of Florida: the Charlotte Harbor Estuary Unit (CHEU), which is comprised of approximately 221,459 acres (ac) (346 square miles [mi²]) of coastal habitat, and the Ten Thousand Islands/Everglades Unit, which is comprised of approximately 619,013 ac (967 mi²) of coastal habitat.

Critical Habitat Unit Affected by this Action

This consultation focuses on an activity occurring in the CHEU, which encompasses portions of Charlotte and Lee Counties (Figure 5). The CHEU is comprised of Charlotte Harbor, Gasparilla Sound, Matlacha Pass, Pine Island Sound, San Carlos Bay, and Estero Bay. The unit is fed by the Myakka and Peace Rivers to the north and the Caloosahatchee River to the east. A series of passes between barrier islands connect the CHEU with the Gulf of Mexico. The CHEU is a relatively shallow estuary with large areas of submerged aquatic vegetation, oyster bars, saltwater marsh, freshwater wetlands, and mangroves. Freshwater flows from the Caloosahatchee River are controlled by the Franklin Lock and Dam, which periodically releases

¹ NMFS. Biological Opinion on Regional General Permit SAJ-82 (SAJ-2007-01590), Florida Keys, Monroe County, Florida. June 10, 2014.

water, which thereby affects downstream salinity regimes. The CHEU boundaries are defined in detail in the Final Rule (74 FR 45353; see also 50 CFR § 226.218).

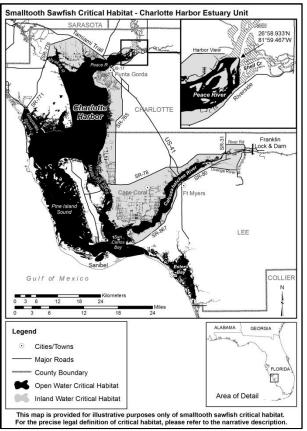


Figure 2. Map of smalltooth sawfish critical habitat -CHEU

Essential Features of Critical Habitat

The recovery plan developed for the smalltooth sawfish, which represents NMFS's best judgment about the objectives and actions necessary for the species' recovery, identified a need to increase the number of juvenile smalltooth sawfish developing into adulthood by protecting or restoring nursery habitat (NMFS 2009). NMFS determined that without sufficient habitat, the population was unlikely to increase to a level associated with low extinction risk and de-listing. Therefore, NMFS identified 2 habitat features essential for the conservation of this species: (1) red mangroves, and (2) shallow, euryhaline habitats (shallow, euryhaline habitats) characterized by water depths between the mean high water line (MHWL) and -3 ft (-0.9 m) measured at mean lower low water (MLLW) (Final Rule, 74 FR 45353). These essential features of critical habitat. One or both of these essential features must be present in an action area for it to function as critical habitat for smalltooth sawfish.

Habitat Use

Juvenile smalltooth sawfish, identified as those up to 3 years of age or approximately 8 ft (2.4 meters [m]) in length (Simpfendorfer et al. 2008), inhabit the shallow waters of estuaries and can be found in sheltered bays, dredged canals, along banks and sandbars, and in rivers (NMFS 2000). Juvenile smalltooth sawfish occur in euryhaline waters (i.e., waters with a wide range of

salinities) and are often closely associated with muddy or sandy substrates, and shorelines containing red mangroves (Simpfendorfer 2001; 2003). The structural complexity of red mangrove prop roots creates a unique habitat used by a variety of fish, invertebrates, and birds. Juvenile smalltooth sawfish, particularly young-of-the-year (YOY) (measuring less than 39.4 inches (in) [100 centimeters (cm)] in length), use these areas as both refuge from predators and forage grounds, taking advantage of the large number of fish and invertebrates found there.

Tracking data from the Caloosahatchee River in Florida indicate very shallow depths and specific salinity ranges are important abiotic factors influencing juvenile smalltooth sawfish movement patterns, habitat use, and distribution (Simpfendorfer et al. 2011). An acoustic tagging study in a developed region of Charlotte Harbor, Florida, identified the importance of mangroves in close proximity to shallow-water habitat for juvenile smalltooth sawfish, stating that juveniles generally occur in shallow water within 328 ft (100 m) of mangrove shorelines (Simpfendorfer et al. 2010). Juvenile smalltooth sawfish spend the majority of their time in waters shallower than 13 ft (4 m) deep (Simpfendorfer et al. 2010) and are seldom found deeper than 32 ft (10 m) (Poulakis and Seitz 2004). Simpfendorfer et al. (2010) also indicated the following developmental differences in habitat use: the smallest YOY juveniles generally used water shallower than 1.6 ft (0.5 m), had small home ranges, and exhibited high levels of site fidelity. Although small juveniles exhibit high levels of site fidelity for specific nursery habitats for periods of time lasting up to 3 months (Wiley and Simpfendorfer 2007), they undergo small movements coinciding with changing tidal stages. These movements often involve moving from shallow sandbars at low tide and among red mangrove prop roots at higher tides (Simpfendorfer et al. 2010), behavior likely to reduce the risk of predation (Simpfendorfer 2006). As juveniles increase in size, they begin to expand their home ranges (Simpfendorfer et al. 2010; Simpfendorfer et al. 2011), eventually moving to more offshore habitats where they likely feed on larger prey and eventually reach sexual maturity.

Researchers have identified several areas within the Charlotte Harbor Estuary that are disproportionately more important to juvenile smalltooth sawfish, based on intra- or inter-annual capture rates during random sampling events within the estuary (Poulakis 2012; Poulakis et al. 2011). The areas, which were termed "hotspots," correspond with areas where public encounters are most frequently reported. Use of these hotspots can be variable within and among years based on the amount and timing of freshwater inflow. Smalltooth sawfish use hotspots further upriver during drought (i.e., high salinity) conditions and areas closer to the mouth of the Caloosahatchee River during times of high freshwater inflow (Poulakis et al. 2011). At this time, researchers are unsure what specific biotic (e.g., presence or absence of predators and prey) or abiotic factors (e.g., salinity) influence this habitat selection. Still, they believe a variety of conditions in addition to salinity, such as temperature, dissolved oxygen, water depth, shoreline vegetation, and food availability, may influence smalltooth sawfish habitat selection (Poulakis et al. 2011).

Status and Threats to Critical Habitat

Modification and loss of smalltooth sawfish critical habitat is an ongoing threat contributing to the current status of the species. Activities such as agricultural and urban development, commercial activities, dredge-and-fill operations, boating, erosion, and diversions of freshwater runoff contribute to these losses (SAFMC 1998). Large areas of coastal habitat were modified or

lost between the mid-1970s and mid-1980s within the United States (Dahl and Johnson 1991; USFWS 1999). Since then, rates of loss have decreased even though habitat loss continues. Between 1998 and 2004, approximately 2,450 ac (3.8 mi²) of intertidal wetlands consisting of mangroves or other estuarine shrubs were lost along the Atlantic and Gulf coasts of the United States (Stedman and Dahl 2008). In another study, Orlando et al. (1994) analyzed 18 major southeastern estuaries and recorded over 703 mi (1,131 kilometers [km]) of navigation channels and 9,844 mi (15,842 km) of shoreline with modifications. Additionally, changes to the natural freshwater flows into estuarine and marine waters through construction of canals and other water-control devices have altered the temperature, salinity, and nutrient regimes, reduced both wetlands and submerged aquatic vegetation coverage, and degraded vast areas of coastal habitat utilized by smalltooth sawfish (Gilmore 1995; Quigley and Flannery 2002; Reddering 1988; Whitfield and Bruton 1989). Juvenile sawfish and their critical habitat are particularly vulnerable to these kinds of habitat losses or alterations due to the juveniles' affinity for (and developmental need of) shallow, estuarine systems. Although many forms of habitat modification are currently regulated, some permitted direct and/or indirect damage to habitat from increased urbanization still occurs and is expected to continue in the future.

In Florida, coastal development often involves the removal of mangroves, the armoring of shorelines through seawall construction, and the dredging of canals. This is especially apparent in master plan communities such as Cape Coral and Punta Gorda which are located within the Charlotte Harbor Estuary. These communities were created through dredge-and-fill projects to increase the amount of waterfront property available for development, but in doing so, developers removed the majority of red mangrove habitat from the area. The canals created by these communities require periodic dredging for boat access, further affecting the shallow, euryhaline essential feature of critical habitat. Development continues along the shorelines of Charlotte Harbor in the form of docks, boat ramps, shoreline armoring, utility projects, and navigation channel dredging.

To protect critical habitat, federal agencies must ensure that their activities are not likely to result in the destruction or adverse modification of the physical and biological features that are essential to the conservation of sawfish, or the species' ability to access and use these features (ESA Section 7(a)(2); see also 50 CFR 424.12(b) (discussing essential features)). Therefore, proposed actions that may impact critical habitat require an analysis of potential impacts to each essential feature. As mentioned previously, there are 2 essential features of smalltooth sawfish critical habitat: (1) red mangroves; and (2) shallow, euryhaline habitats characterized by water depths between the MHWL and -3 ft (-0.9 m) measured at MLLW. The USACE oversee the permitting process for residential and commercial marine development in the CHEU. The Florida Department of Environmental Protection and their designated authorities also regulate mangrove removal in Florida. All red mangrove removal permit requests within smalltooth sawfish critical habitat necessitate ESA Section 7 consultation. NMFS Protected Resources Division tracks the loss of these essential features of smalltooth sawfish critical habitat.

Threats to Critical Habitat

Dock and Boat Ramp Construction

The USACE recommends that applicants construct docks in accordance with the NMFS-USACE *Dock Construction Guidelines in Florida for Docks or Other Minor Structures Constructed in or*

over Submerged Aquatic Vegetation (SAV), Marsh, or Mangrove Habitat ("Dock Construction Guidelines") when possible. The current dock construction guidelines allow for some amount of mangrove removal; however, it is typically restricted to either (1) trimming to facilitate a dock, or (2) complete removal up to the width of the dock extending toward open water, which the guidelines define as a width of 4 ft.

Installation or replacement of boat ramps is often part of larger projects such as marinas, bridge approaches, and causeways where natural and previously created deepwater habitat access channels already exist. Boat ramps can result in the permanent loss of both the red mangrove and the shallow, euryhaline habitat features of critical habitat for smalltooth sawfish.

Marina Construction

Marinas have the potential to adversely affect aquatic habitats. Marinas are typically designed to be deeper than 3 ft MLLW to accommodate vessel traffic; therefore, most existing marinas lacking essential features are unlikely to function as critical habitat for smalltooth sawfish. The expansion of existing marinas and creation of new marinas can result in the permanent loss of large areas of this nursery habitat.

Bulkhead and Seawall Construction

Bulkheads and other shoreline stabilization structures are used to protect adjacent shorelines from wave and current action and to enhance water access. These projects may adversely impact critical habitat for smalltooth sawfish by removal of the essential features through direct filling and dredging to construct vertical or riprap seawalls. Generally, vegetation plantings, sloping riprap, or gabions are environmentally-preferred shoreline stabilization methods instead of vertical seawalls because they provide better quality fish and wildlife habitat. Nevertheless, placement of riprap material removes more of the shallow euryhaline essential feature than a vertical seawall. Also, many seawalls built along unconsolidated shorelines require the removal of red mangroves to accommodate the seawalls.

Cable, Pipeline, and Transmission Line Construction

While not as common as other activities, excavation of submerged lands is sometimes required for installing cables, pipelines, and transmission lines. Construction may also require temporary or permanent filling of submerged habitats. Open-cut trenching and installation of aerial transmission line footers are activities that have the ability to temporarily or permanently impact critical habitat for smalltooth sawfish.

Transportation Infrastructure Construction

Potential adverse effects from federal transportation projects in smalltooth sawfish critical habitat (CHEU) include operations of the Federal Highway Administration, USACE, and the Federal Emergency Management Agency. Construction of road improvement projects typically follow the existing alignments and expand to compensate for the increase in public use. Transportation projects may impact critical habitat for smalltooth sawfish through installation of bridge footers, fenders, piles, and abutment armoring, or through removal of existing bridge materials by blasting or mechanical efforts.

Dredging

Riverine, nearshore, and offshore areas are dredged for navigation, construction of infrastructure, and marine mining. An analysis of 18 major southeastern estuaries conducted in 1993-1994 demonstrated that over 7,000 kilometers of navigation channels have already been dredged (Orlando et al. 1994). Habitat effects of dredging include the loss of submerged habitats by disposal of excavated materials, turbidity and siltation effects, contaminant release, alteration of hydrodynamic regimes, and fragmentation of physical habitats (GMFMC 1998; GMFMC 2005; SAFMC 1998). In the CHEU, dredging to maintain canals and channels constructed prior to the critical habitat designation, limits the amount of available shallow, euryhaline essential feature to the edges of waterways and these dredging activities can disturb juveniles that are using these areas. At the time of critical habitat designation, many previously dredged channels and canals existed within the boundaries of the critical habitat units; however, we are unsure which of those contained the shallow-water essential feature at that time. It is likely that many of these channels and canals were originally dredged deeper than -3 ft MLLW, but they have since shoaled in and now contain the essential feature of shallow, euryhaline habitat. Therefore, maintenance dredging impacts are counted as a loss to this essential feature, even though the areas may or may not have contained the essential feature at time of designation (see Figure 3 Diagrams A and B).

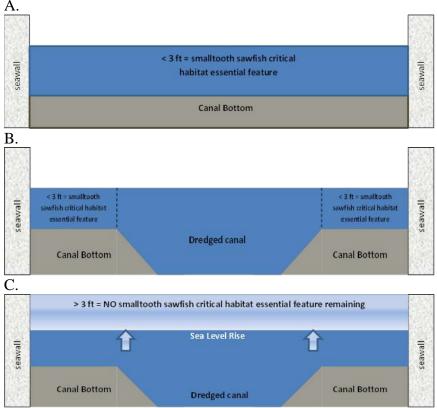


Figure 3. Diagram A depicts a cross section of a historically dredged channel/canal within the boundaries of the critical habitat units that has not been maintained. Diagram B depicts the typical cross section of a maintenance dredged channel/canal. Diagram C depicts a cross section of a maintained dredged channel/canal after sea level rise of > 1 ft.

Construction, Operations and Maintenance of Impoundments and Other Water Level Controls Federal agencies such as the USACE have historically been involved in large water control projects in Florida. Agencies sometimes propose impounding rivers and tributaries for such purposes as flood control, salt water intrusion prevention, or creation of industrial, municipal, and agricultural water supplies. Projects to repair or replace water control structures may affect smalltooth sawfish critical habitat by limiting sufficient freshwater discharge which could alter the salinity of estuaries. The ability of an estuary to function as a nursery depends upon the quantity, timing, and input location of freshwater inflows (Garmestani and Percival 2005; Norton et al. 2012; USEPA 1994). Estuarine ecosystems are vulnerable to the following man-made disturbances: (1) decreases in seasonal inflow caused by the removal of freshwater upstream for agricultural, industrial, and domestic purposes; (2) contamination by industrial and sewage discharges; (3) agricultural runoff carrying pesticides, herbicides, and other toxic pollutants; and (4) eutrophication (e.g., influx of nutrients such as nitrates and phosphates most often from fertilizer runoff and sewage) caused by excessive nutrient inputs from a variety of nonpoint and point sources. Additionally, rivers and their tributaries are susceptible to natural disturbances, such as floods and droughts, whose effects can be exacerbated by these man-made disturbances.

As stated above, smalltooth sawfish show an affinity for a particular salinity range, moving downriver during wetter months and upriver during drier months to remain within that range (Simpfendorfer et al. 2011). Therefore, water management decisions that affect salinity regimes may impact the functionality of critical habitat. This may result in smalltooth sawfish following specific salinity gradients into less advantageous habitats (e.g., areas with less shallow-water or red mangrove habitat). Furthermore, large changes in water flow over short durations would likely escalate movement patterns for smalltooth sawfish, thereby increasing predation risk and energy output. Researchers are currently looking into the effects of large-scale freshwater discharges on smalltooth sawfish and their designated critical habitat. The most vulnerable portion of the juvenile sawfish population to water-management outfall projects appears to be smalltooth sawfish in their first year of life. Newborn smalltooth sawfish remain in smaller areas irrespective of salinity, which potentially exposes them to greater osmotic stress (a sudden change in the solute concentration around a cell, causing a rapid change in the movement of water across its cell membrane), and impacts the nursery functions of sawfish critical habitat (Poulakis et al. 2013; Simpfendorfer et al. 2011).

Climate Change Threats

The Intergovernmental Panel on Climate Change (IPCC) has stated that global climate change is unequivocal and its impacts to coastal resources may be significant (IPCC 2007). There is a large and growing body of literature on past, present, and future impacts of global climate change induced by human activities (i.e., global warming mostly driven by the burning of fossil fuels). The latest report by the IPCC (2013) is more explicit, stating that, "science now shows with 95% certainty that human activity is the dominant cause of observed warming since the mid-twentieth century." Some of the anticipated outcomes are sea level rise, increased frequency of severe weather events, and changes in air and water temperatures. NOAA's climate change web portal provides information on the climate-related variability and changes that are exacerbated by human activities (http://www.climate.gov/#understandingClimate). The EPA's climate change webpage also provides basic background information on these and other measured or anticipated effects (http://www.epa.gov/climatechange/index.html).

Though the impacts on smalltooth sawfish cannot, for the most part, be predicted with any degree of certainty, we can project some effects to sawfish critical habitat. We know that both essential features (red mangroves and shallow, euryhaline waters less than 3 ft deep at MLLW) will be impacted by climate change. Sea level rise is expected to exceed 3.3 ft (1 m) globally by 2100, according to the most recent publications, exceeding the estimates of the Fourth Assessment of the IPCC (Meehl et al. 2007; Pfeffer et al. 2008; Rahmstorf et al. 2009). Mean sea level rise projections have increased since the Fourth Assessment because of the improved physical understanding of the components of sea level, the improved agreement of process-based models with observations, and the inclusion of ice-sheet dynamical changes (IPCC 2013). A 1-m sea level rise in the state of Florida is within the range of recent estimates by 2080 (Pfeffer et al. 2008; Rahmstorf et al. 2009).

Sea level increases would affect the shallow-water essential feature of smalltooth sawfish critical habitat within the CHEU. A 2010 climate change study by the Massachusetts Institute of Technology (MIT) forecasted sea level rise in a study area with significant overlap with the CHEU (Vargas-Moreno and Flaxman 2010). The study investigated possible trajectories of future transformation in Florida's Greater Everglades landscape relative to 4 main drivers: climate change, shifts in planning approaches and regulations, population change, and variations in financial resources. Massachusetts Institute of Technology used (IPCC 2007) sea level modeling data to forecast a range of sea level rise trajectories from low, to moderate, to high predictions (Figure 4). The effects of sea level rise on available shallow-water habitat for smalltooth sawfish would be exacerbated in areas where there is shoreline armoring (e.g., seawalls). This is especially true in canals where the centerlines are maintenance-dredged deeper than 3 ft (0.9 m) for boat accessibility. In these areas, the areas that currently contain the essential feature depth (less than 3 ft at MLLW) will be reduced along the edges of the canals as sea level rises (see previous Figure 3, Diagram C).

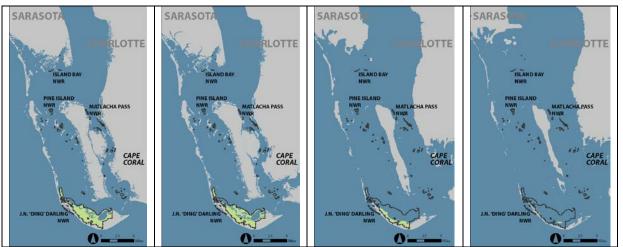


Figure 4. From left to right: current shoreline, +3.5 in (+9 cm); +18.5 in (+47 cm); and +38.97 in (+99 cm) sea level rise by 2060.²

² Adapted from (Vargas-Moreno and Flaxman), M. Addressing the Challenges of Climate Change in the Greater Everglades Landscape. Project Sheet. November, 2010. Department of Urban Planning, MIT.

Along the Gulf Coast of Florida, and south Florida in particular, rises in sea level will impact mangrove resources. As sea levels rise, mangroves will be forced landward in order to remain at a preferred water inundation level and sediment surface elevation, which is necessary for successful growth. This retreat landward will not keep pace with conservative projected rates of elevation in sea level (Gilman et al. 2008). This forced landward progression poses the greatest threat to mangroves in areas where there is limited or no room for landward or lateral migration (Semeniuk 1994). Such is the case in areas of the CHEU where landward mangrove growth is restricted by shoreline armoring and coastal development. This man-made barrier will prohibit mangroves from moving landward and will result in the loss of the mangrove essential feature.

Other threats to mangroves result from climate change: fluctuations in precipitation amounts and distribution, seawater temperature, carbon dioxide (CO₂) levels, and damage to mangroves from increasingly severe storms and hurricanes (McLeod and Salm 2006). A 25% increase in precipitation globally is predicted by 2050 (McLeod and Salm 2006), but the specific geographic distribution will vary, leading to increases and decreases in precipitation at the regional level. Changes in precipitation patterns caused by climate change may adversely affect the growth of mangroves and their distribution (Field 1995; Snedaker 1995). Decreases in precipitation will increase salinity and inhibit mangrove productivity, growth, seedling survival, and spatial coverage (Burchett et al. 1984). Decreases in precipitation may also change mangrove species composition, favoring more salt-tolerant types (Ellison 2010). Increases in precipitation may benefit some species of mangroves, increasing spatial coverage and allowing them to outcompete other salt marsh vegetation (Harty 2004). Even so, potential mangrove expansion requires suitable habitat for mangroves to increase their range, which depends to a great extent on patterns and intensity of coastal development (i.e., bulkhead and seawall construction).

Seawater temperature changes will have potential adverse effects on mangroves as well. Many species of mangroves show an optimal shoot density in sediment temperatures between $59^{\circ}-77^{\circ}F$ ($15^{\circ}-25^{\circ}C$) (Hutchings and Saenger 1987). Yet, at temperatures between $77^{\circ}-95^{\circ}F$ ($25^{\circ}-35^{\circ}C$), many species begin to show a decline in leaf structure and root and leaf formation rates (Saenger and Moverley 1985). Temperatures above $95^{\circ}F$ lead to adverse effects on root structure and survivability of seedlings (UNESCO 1992) and temperatures above $100.4^{\circ}F$ ($38^{\circ}C$) lead to a cessation of photosynthesis and mangrove mortality (Andrews et al. 1984). Although impossible to forecast precisely, sea surface ocean temperatures are predicted to increase $1.8^{\circ}-3.6^{\circ}F$ ($1^{\circ}-2^{\circ}C$) by 2060 (Chapter 11 (IPCC 2013)), which will in turn impact underlying sediment temperatures along the coast. If mangroves shift pole-ward in response to temperature increases, they will at some point be limited by temperatures at the lower end of their optimal range and available recruitment area. This is especially true when considering already armored shorelines in residential communities such as those within and surrounding the CHEU of critical habitat for smalltooth sawfish.

As atmospheric CO_2 levels increase, mostly resulting from man-made causes (e.g., burning of fossil fuels), the world's oceans will absorb much of this CO_2 , causing potential increases in photosynthesis and mangrove growth rates. This increase in growth rate, however, would be limited by lower salinities expected from CO_2 absorption in the oceans (Ball et al. 1997), and by the availability of undeveloped coastline for mangroves to expand their range. A secondary effect of increased CO_2 concentrations in the oceans is the deleterious effect on coral reefs'

ability to absorb calcium carbonate (Hoegh-Guldberg et al. 2007), and subsequent reef erosion. Eroded reefs may not be able to buffer mangrove habitats from waves, especially during storm/hurricane events, causing additional physical effects.

Finally, the anticipated increase in the severity of storms and hurricanes may also impact mangroves. Tropical storms are expected to increase in intensity and/or frequency, which will directly impact existing mangroves that are already adversely impacted by increased seawater temperatures, CO₂, and changes in precipitation (Cahoon et al. 2003; Trenberth 2005). The combination of all of these factors may lead to reduced mangrove height (Ning et al. 2003). Further, intense storms could result in more severe storm surges and lead to potential changes in mangrove community composition, mortality, and recruitment (Gilman et al. 2006). Increased storms surges and flooding events could also affect mangroves' ability to photosynthesize (Gilman et al. 2006) and the oxygen concentrations in the mangrove lenticels (Ellison 2010).

5 ENVIRONMENTAL BASELINE

This section describes the effects of past and ongoing human and natural factors contributing to the current status of the affected smalltooth sawfish critical habitat in the action area. The environmental baseline describes the critical habitat's health based on information available at the time of this consultation.

By regulation (50 CFR 402.02), environmental baselines for Biological Opinions include the past and present impacts of all state, federal, or private actions and other human activities in, or having effects in, the action area. We identify the anticipated impacts of all proposed federal projects in the specific action area of the consultation at issue that have already undergone formal or early Section 7 consultation (as defined in 50 CFR 402.11), as well as the impact of state or private actions, or the impacts of natural phenomena, which are concurrent with the consultation in process (50 CFR 402.02).

Focusing on the impacts of the activities in the action area specifically allows us to assess the prior experience and state (or condition) of the critical habitat. We can focus on areas of designated critical habitat that occur in an action area that may be exposed to effects from the action under consultation. This is important because in some areas, critical habitat features will commonly exhibit, or be more susceptible to, adverse responses to stressors than they would be in other areas. These localized stress responses or stressed baseline conditions may increase the severity of the adverse effects expected from the proposed action.

5.1 Status of Critical Habitat within the Action Area

The project site is a vacant, residential lot within a residential manmade canal that has remaining mangroves mostly adjacent to other vacant residential lots; most of the properties along the Longview Canal are not yet developed with homes and do not have consolidated shoreline. Water depths at the current shoreline are approximately 2.1 feet (ft) deep at mean lower low water (MLLW) and the substrate type in the project footprint is described as sandy muck. The action area is void of submerged aquatic vegetation. The extensive residential, manmade canal system in Lee County is adjacent to the Charlotte Harbor Preserve State Park (CHPSP). CHPSP is comprised of 43,000 acres and protects 80 miles of shoreline habitat along the Charlotte

Harbor estuaries in Charlotte and Lee Counties, providing a buffer between the aquatic preserves and urban development and agriculture (Charlotte Harbor Aquatic Preserves Management Plan, 2016).

5.2 Factors Affecting Critical Habitat within the Action Area

Federal Actions

Since the designation of smalltooth sawfish critical habitat on September 2, 2009, we have consulted on several shoreline stabilization projects (seawall installations necessitating red mangrove and shallow-water habitat removal) in the greater residential canal system where the project is located. No other federal permitted projects are known to have occurred within the action area (which we defined in Section 3), as per a review of the NMFS PRD's completed consultation database (as reviewed by consulting biologist on March 6, 2017). However, the largest project that NMFS consulted on in this residential, man-made canal network was for a large development in the northern portion. We issued an Opinion (SER-2012-3777) evaluating the removal of 1,568 lin ft of red mangroves.

USACE Authorized Marine Construction Permitting

The USACE issues permits under the Clean Water Act and Rivers and Harbors Act for coastal in-water marine construction, including actions to consolidate shoreline abutting residential properties for new home construction. Consolidation of shoreline usually involves shoreline armoring, such as seawall and riprap revetment, which often necessitates the removal of mangroves and disturbance of submerged aquatic vegetation (e.g., seagrasses that are covered by riprap). In the action area, state and county ordinances often require shoreline armoring before building on vacant lots is allowed. Although individual shoreline armoring projects may be small in scale, cumulatively, these required armoring projects could have a potentially large effect on smalltooth sawfish critical habitat. This is particularly true given the limited options available under the ordinances for shoreline armoring. For example, alternatives to vertical seawalls such as living shorelines are not currently an option for the required pre-construction shoreline armoring.

State or Private Actions

A number of nonfederal activities that may adversely affect designated critical habitat for smalltooth sawfish in the action area include impacts from residential shoreline stabilization activities that do not require federal permits or otherwise have a federal nexus (i.e., seawall, riprap). The direct and indirect impacts from some of these activities are difficult to quantify. Where possible, conservation actions in ESA Section 10 permits, ESA Section 6 cooperative agreements, and state permitting programs are being implemented or investigated to monitor or study impacts from these sources.

Other Potential Sources of Impacts to the Environmental Baseline

Stochastic events, such as hurricanes, are common throughout the range of smalltooth sawfish, especially in the current core of its range (i.e., south and southwest Florida). These events are by nature unpredictable, and their effect on the recovery of the species and on critical habitat is unknown; however, they have the potential to impede recovery directly if animals die as a result of them, or indirectly if critical habitat is damaged as a result of these disturbances. In 2005, Hurricane Charley likely damaged habitat, including mangroves, in and around the action area.

Conservation and Recovery Actions Shaping the Environmental Baseline

Federal Essential Fish Habitat (EFH) consultation requirements pursuant to the Magnuson-Stevens Fishery Conservation and Management Act minimize and mitigate for losses of wetland and preserve valuable foraging and developmental habitat that is used by juvenile smalltooth sawfish, including areas that have been designated as smalltooth sawfish critical habitat. NMFS has designated mangrove and estuarine habitats as EFH as recommended by the Gulf of Mexico Fishery Management Council. Both essential features (shallow, euryhaline water less than 3 ft MLLW and red mangroves) are critical components of areas designated as EFH and receive a basic level of protection under the Magnuson-Stevens Act to the extent that the Act requires minimization of impacts to EFH resources.

6 EFFECTS OF THE ACTION ON CRITICAL HABITAT

6.1 Shallow, Euryhaline Essential Feature Impacts

The shallow, euryhaline essential feature found within the CHEU of designated critical habitat for the U.S. DPS of smalltooth sawfish is present adjacent to the unconsolidated shoreline to be armored in the project at issue and is likely to be adversely affected. The proposed seawall installation will result in a permanent loss of approximately 260 ft² (0.00597 ac) of the shallow. euryhaline habitat as potential forage and shelter areas for juvenile smalltooth sawfish. Using remote sensing data acquired from the Fish and Wildlife Research Institute (FWRI), we were able to compile information relating to the total area of this essential feature within smalltooth sawfish critical habitat. The total amount of shallow, euryhaline habitat for CHEU at the time of smalltooth sawfish were listed under the ESA was approximately 132 mi² (84,480 ac) (NMFS unpublished data). While the available shallow, euryhaline essential feature will be diminished by approximately 260 ft², the project is not severing or preventing juvenile smalltooth sawfish access to alternate habitat with this essential feature in the surrounding area. Still, some ecological function provided to juvenile smalltooth sawfish in terms of the shallow, euryhaline essential feature will be lost. The project is located deep within an extensive residential canal system far away from any known hotspot reproductive areas such as those areas identified within the Caloosahatchee River (Poulakis 2012; Poulakis et al. 2011). There has been 1 sighting of smalltooth sawfish reported within the canal system approximately 1.68 mi from the action area (1 small juvenile in 2010) (ISED, unpublished data). Juvenile smalltooth sawfish use the shallow, euryahaline essential feature to forage and take refuge from potential predators. Therefore, the permanent loss of 260 ft² of nearshore shallow-water area along the project site is likely to adversely affect the shallow, euryhaline essential feature of smalltooth sawfish critical habitat.

6.2 Red Mangrove Essential Feature Impacts

The red mangrove essential feature found within the CHEU of designated critical habitat for the U.S. DPS of smalltooth sawfish is present and is likely to be adversely affected by the seawall installation. The proposed project will result in a permanent loss of approximately 80 ft² along 80 lin ft of shoreline of the red mangrove habitat, which is potential forage and shelter area for juvenile smalltooth sawfish. Using remote sensing data acquired from the FWRI, we were able to compile information relating to the total area of this essential feature within smalltooth sawfish critical habitat. Based on that information, we estimated that the total amount of red mangrove shoreline for the CHEU was approximately 5,512,320 lin ft (1,044 mi) at the time that

smalltooth sawfish were listed under the ESA in 2003. While the available red mangrove essential feature in the CHEU will be diminished by approximately 80 ft², along 80 lin ft of shoreline, the project is not severing or preventing access to alternate refuge or forage areas at the site or in the surrounding area, for juvenile smalltooth sawfish. Still, some ecological function provided to juvenile smalltooth sawfish in terms of the red mangrove essential feature will be lost. Thus, we believe the proposed removal of 80 ft² of a red mangrove along 80 lin ft of shoreline is likely to adversely affect the red mangrove essential feature of smalltooth sawfish critical habitat.

7 CUMULATIVE EFFECTS

Cumulative effects include the effects of future state, tribal, or local private actions that are reasonably certain to occur in the action area considered in this Opinion. Future federal actions that are unrelated to the proposed action are not considered in this section because they require separate consultation pursuant to Section 7 of the ESA (50 CFR 402.02).

Many threats to smalltooth sawfish critical habitat are expected to be exacerbated by the effects of global climate change (see Threats to Critical Habitat section). Potential increases in sea level may impact the availability of nursery habitat, particularly shallow euryhaline and red mangrove lined, low-lying coastal habitats (IPCC 2014; Wanless et al. 2005). Red mangroves could be negatively affected by increased temperatures, salinities, and acidification of coastal waters (Snedaker 1995), Wanless et al. 2005 (Scavia et al. 2002), as well as increased runoff and erosion due to the expected increase in extreme storm events (IPCC 2014; Wanless et al. 2005). These alterations of the marine environment due to global climate change could ultimately affect the distribution, physiology, and growth rates of red mangroves, potentially eliminating them from particular areas. The magnitude of these effects on smalltooth sawfish critical habitat (Norton et al. 2012; Scavia et al. 2002). However, this proposed action is of such a small scale, scope, and limited time frame that is not very likely to contribute to, or be affected cumulatively by climate change.

Smalltooth sawfish habitat has been degraded or modified throughout the southeastern United States, including areas designated as critical habitat, from agriculture, urban development, commercial activities, channel dredging, boating activities, and the diversion of freshwater runoff.

No future actions with effects beyond those already described are reasonably certain to occur in the action area. The man-made canals within the CHEU will likely continue to experience the same types of actions described in the status of critical habitat in Section 3. These threats include shoreline armoring (e.g., seawall installation and associated red mangrove removal), canal dredging, and dock construction.

8 INTEGRATION AND SYNTHESIS

8.1 Critical Habitat Destruction/Adverse Modification Analysis

NMFS's regulations define *Destruction or adverse modification* to mean "a direct or indirect alteration that appreciably diminishes the value of critical habitat for the conservation of a listed species. Such alterations may include, but are not limited to, those that alter the physical or biological features essential to the conservation of a species or that preclude or significantly delay development of such features" (50 CFR § 402.02). Other alterations that may destroy or adversely modify critical habitat may include impacts to the area itself, such as those that would impede access to or use of the essential features. We intend the phrase "significantly delay" in development of essential features to encompass a delay that interrupts the likely natural trajectory of the development of physical and biological features in the designated critical habitat to support the species' recovery. NMFS will generally conclude that a Federal action is likely to "destroy or adversely modify" designated critical habitat if the action results in an alteration of the quantity or quality of the essential physical or biological features of designated critical habitat, or that precludes or significantly delays the capacity of that habitat to develop those features over time, if the effect of the alteration is to appreciably diminish the value of critical habitat for the conservation of the species.

This analysis takes into account the geographic and temporal scope of the proposed action, recognizing that "functionality" of critical habitat necessarily means that it must now and must continue in the future to support the conservation of the species and progress toward recovery. The analysis must take into account any changes in amount, distribution, or characteristics of the critical habitat that will be required over time to support the successful recovery of a/the species. Destruction or adverse modification does not depend strictly on the size or proportion of the area adversely affected, but rather on the role the action area and the affected critical habitat serves with regard to the function of the overall critical habitat designation, and how that role is affected by the action.

In designating critical habitat for the smalltooth sawfish, we explained that the key conservation objective for the species is to facilitate recruitment of juveniles into the adult sawfish population by protecting juvenile areas. We determined that the habitat features essential to the achieving that conservation objective are (1) red mangroves and (2) shallow, euryhaline habitats characterized by water depths between the MHWL and 3 ft (0.9 m) measured at MLLW. These essential features are necessary to facilitate recruitment of juveniles into the adult population because they provide for predator avoidance and habitat for prey in the areas currently being used as juvenile nursery areas. Impacts to designated critical habitat, thus, have the potential to destabilize recovery efforts and impede chances for recovery.

Our analysis evaluates whether the anticipated impacts to critical habitat associated with the proposed action would interfere with the conservation objective behind the designated critical habitat—that is, facilitation of juvenile recruitment into a recovering adult population. In addition, we evaluate whether the impacts to critical habitat would interfere with the recovery objectives for the species.

The smalltooth sawfish recovery plan identified 3 recovery objectives: (1) minimizing human interactions and associated injury and mortality; (2) protecting and/or restoring smalltooth sawfish habitats; and (3) ensuring smalltooth sawfish abundance increases substantially and the

species reoccupies areas from which it had previously been extirpated (NMFS 2009). Protecting critical habitat is important to achieving the second and third recovery objectives.

For example, in establishing the second recovery objective, we recognized that recovery of the smalltooth sawfish depends on the availability and quality of nursery habitats. Historically, juvenile sawfish were documented in mangrove and non-mangrove habitat in the southeastern United States, with reports at the time of the recovery plan showing a strong association with red mangrove and shallow, euryhaline waters in southwest Florida, features we designated as essential to conservation of the species. Much of the historic juvenile sawfish habitat in southwest Florida, which encompasses Recovery Regions G, H, and I, remains high quality and must be strongly protected at near existing levels to allow for the species' recovery. The CHEU is in Recovery Region G. For these 3 recovery regions with remaining high-quality juvenile habitat, the recovery plan states juvenile habitats must be maintained and effectively protected over the long term at or above 95% of the acreage available at the time of listing, which occurred in April 2003.

To meet the third recovery objective, we explained that it was important that sufficient numbers of juvenile sawfish inhabit several nursery areas across a diverse geography area to ensure survivorship and growth and to protect against the negative effects of stochastic events within parts of their range. To meet this objective, Recovery Region G must support sufficiently large numbers of juvenile sawfish to ensure that the species is viable in the long-term and can maintain genetic diversity. Thus, for this region, the recovery objectives also require that the relative abundance of small juvenile sawfish (< 200 cm) either increase at an average annual rate of at least 5% over a 27-year period, or juvenile abundance is at greater than 80% of the carrying capacity of the recovery region.

8.2 Shallow, Euryhaline Essential Feature Impacts

At the time of listing in May 2003 NMFS estimated that 84,480 ac of shallow, euryhaline habitat was available within the 221,459 acres of the CHEU (Table 3, Line 1). The recovery plan is specific that critical habitat must be maintained at or above 95% of the habitat available at the time of listing. However, loss of habitat was not formally monitored until critical habitat was designated in September 2009. Therefore to meet the recovery sub-objective, we must estimate habitat loss that occurred between 2003 and 2009. We used a 7-year dataset of completed Section 7 consultations (September 2009 – September 2016) to generate an annual rate of loss that can then be used as a proxy to back-calculate the loss of shallow, euryhaline habitat between species listing and the time of critical habitat designation. We are relying on this 7-year dataset because using 7 complete years of information helps avoid over- or under-estimating the rate of habitat loss due to any potential intra-annual variability. In addition, we believe these 7 years provide a good basis for estimating the loss between 2003 and 2009; the dataset is sufficiently large that we believe it accurately reflects any inter-annual variability associated with economic growth and contraction that may have occurred in that time. During that time, NMFS completed 107 Section 7 consultations on projects within the CHEU that resulted in the total loss of 16.18 ac of shallow, euryhaline habitat. This total loss translate into an average loss rate of 2.31 ac (16.18 ac/7 years) of shallow, euryhaline habitat per year, or 0.19 ac per month (2.31 ac per year/12 month = 0.19 ac per month). Assuming similar rates of shallow, euryhaline habitat loss in the 77 months between when the species was listed and the time of critical habitat designation, we estimate that 14.63 ac of shallow, euryhaline habitat was lost prior to critical habitat designation (77 months x 0.19 ac/month = 14.63 ac) (Table 3, Line 3). Since the designation of critical habitat until December 31, 2016^3 , NMFS has completed 116 Section 7 consultations on projects within the CHEU that have resulted in the total loss of approximately 16.77 ac of shallow, euryhaline habitat (Table 3, Line 4).

Taking into consideration the estimated total of shallow, euryhaline habitat in the CHEU at time of listing (84,480 ac), the estimated loss of shallow, euryhaline habitat prior to critical habitat designation (14.63 ac), and the estimated loss of shallow habitat since critical habitat designation (16.77 ac), we calculated 84,448.60 ac of shallow, euryhaline habitat currently remains available for juvenile smalltooth sawfish in the CHEU (84,480 ac - 31.40 ac [14.63 ac + 16.77 ac] = 84,448.60 ac (Table 3, Line 5). While this number only takes into account projects with a federal nexus requiring ESA Section 7 consultation, there are very few projects without a federal nexus that could impact shallow, euryhaline habitat in the CHEU as most in-water construction projects require federal authorization.

Based on the recovery plan objectives, 95% of the shallow, euryhaline habitat available at the time the species was listed, or approximately 80,256 ac of shallow, euryhaline habitat in the CHEU, must be maintained and effectively protected to facilitate recovery of the smalltooth sawfish $(0.95 \times 84,480 = 80,256)$ (Table 3, Line 2). This requirement is premised on the fact that although the CHEU is part of the larger Recovery Region G, and the 95% protection requirement applies across the areas within Recovery Regions G, H, and I, designated critical habitat is currently the only area in which nursery areas have been established and are being protected specifically for that purpose. The permanent loss of 260 ft² (0.005969 ac) of shallow, euryhaline habitat (Table 3, Line 6), in addition to 31.40 ac of shallow, euryhaline habitat already lost in critical habitat since the species was listed results in a combined loss of 0.037495% of the estimated available shallow-water feature at time of listing ([31.405969 (0.005969 ac + 31.40/84,480] x 100 = 0.037176%) (Table 3, Line 7). Thus, this loss, in combination with the losses since we listed the species, does not provide any impediment to achieving the recovery objective of effectively protecting 95% of the habitat available at the time the species was listed. In addition, while this loss is a reduction in the total area with those features currently available in the CHEU, it represents a fraction of the overall habitat available, and is neither an appreciable reduction in the amount of habitat available nor an appreciable diminishment in the functionality of the habitat in serving juvenile sawfish.

Determining impacts of the project on the other relevant recovery objective, juvenile abundance, is made difficult by the state of available data. Since both the designation of critical habitat and the release of the recovery plan in 2009, an ongoing study has been occurring in the CHEU. FWRI is conducting this study which is supported primarily under funding provided by NMFS through the Section 6 Species Recovery Grants Program. Its intent is to determine the distribution, habitat use, and movement of juvenile sawfish in the CHEU. Given the limited duration (approximately 7+ years [September 2009-current]) of this study, there is not enough data to discern the trend in juvenile abundance within the CHEU or Recovery Region G. Early indications, however, are that juvenile sawfish are likely recovering in the CHEU, due in large

³ Due to the small number of monthly projects affecting smalltooth sawfish critical habitat and the limited adverse impact from typical seawall/dock projects to critical habitat, NMFS updates annual loss rates quarterly.

part to ESA-listing of the species and critical habitat. Still, a significant amount of data needs to be analyzed in the near future to better determine to what extent juveniles are recovering. The project area is not documented as a hotspot for juveniles. Though species abundance is generally linked to habitat availability, we do not believe the loss of habitat associated with this project, in combination with the losses to date, will impede the 5% annual growth objective for the juvenile population within Recovery Region G. Available data indicate the adult population in southwest Florida is reproducing and that the juvenile population trend is at least stable within the core range and possibly increasing—though variability is high (Carlson and Osborne 2012; Carlson et al. 2007). Yet, it is too early to definitively state that juveniles are surviving to adulthood or that the population is recovering as a whole.

Based on the foregoing (summarized in Table 3), we conclude that the proposed action's adverse effects on the shallow, euryhaline habitat essential feature of smalltooth sawfish critical habitat will not diminish the critical habitat's conservation value—supporting recruitment of juveniles into the adult population—or otherwise impede the recovery objectives for the species.

	Shallow, Euryhaline Habitat in the CHEU	Acres	
1.	Available habitat in May 2003	84,480	
2.	Available habitat that must be maintained (per Recovery Plan)	80,256 (95% of 84,480)	
3.	Habitat lost May 2003 to September 2009	14.63	
4.	Habitat lost September 2009 to December 31, 2016 (Section 7)*	16.77	
5.	Habitat remaining as of December 31, 2016*	84,448.60	
6.	Habitat affected by this project	0.005969	
7.	Habitat affected since species listing	31.405969 (0.037176% of 84,480)	
*Due to the small number of monthly projects affecting smalltooth sawfish critical habitat and the limited adverse impact from typical seawall/dock projects to critical habitat, NMFS update losses quarterly.			

Table 3.	Summary	of Impacts to	o the Shallow.	. Eurvhaline Ha	abitat Essential Feature
I unit of	Summury	or impucto o	J the bhand we	, Lai y namic nic	

8.3 Red Mangrove Essential Feature Impacts

At the time of species listing in May 2003, remote sensing data from FWRI indicated that approximately 5,512,320 lin feet of red mangrove shoreline was available in the CHEU (Table 4, Line 1). The recovery plan is specific that critical habitat must be maintained at or above 95% of the habitat available at the time of listing. However, loss of habitat was not formally monitored until critical habitat was designated in September 2009. Therefore to meet the recovery sub-objective, we must estimate habitat loss that occurred between 2003 and 2009. We used a 7-year dataset of completed Section 7 consultations (September 2009 – September 2016) to generate an annual rate of loss that can then be used as a proxy to back-calculate the loss of red mangrove shoreline between species listing and the time of critical habitat designation. We are relying on this 7-year dataset because using 7 complete years of information helps avoid over- or underestimating the rate of habitat loss due to any potential intra-annual variability. In addition, we believe these 7 years provide a good basis for estimating the loss between 2003 and 2009; the dataset is sufficiently large that we believe it accurately reflects any inter-annual variability

associated with economic growth and contraction that may have occurred in that time. During that time, NMFS completed 107 Section 7 consultations on projects within the CHEU that resulted in the total loss of 12,302 lin ft of red mangrove shoreline. These total losses translate into an average loss rate of 1,757.43 lin ft (12,302 lin ft/7 years) of red mangrove shoreline per year, or 146.45 lin ft per month (1,757.43 lin ft/12 month = 146.45 lin ft). Assuming similar rates of red mangrove loss between when the species was listed and the time of critical habitat designation, we estimate that 11,276.65 lin ft of red mangrove were lost prior to critical habitat designation (77 months x 146.45 lin ft/month = 11,276.65 lin ft) (Table 4, Line 3). From the time of critical habitat designation until December 31, 2016⁴, NMFS completed 116 Section 7 consultations on projects within the CHEU that have resulted in the total loss of approximately 13,010 lin ft of red mangrove shoreline (Table 4, Line 4).

Taking into consideration the estimated total of red mangrove shoreline at time of listing (5,512,320 lin ft), the estimated loss of red mangroves prior to critical habitat designation (11,276.65 lin ft), and the estimated loss of red mangroves since critical habitat designation (13,010 lin ft), we calculated 5,488,033.35 lin ft of red mangroves currently remain available for juvenile smalltooth sawfish in the CHEU (5,512,320 lin ft - 24,286.65 lin ft [11,276.65 lin ft + 13,010 lin ft] = 5,488,033.35 lin ft) (Table 4, Line 5). While this number only takes into account projects with a federal nexus requiring ESA section 7 consultation, there are very few projects without a federal nexus that could impact red mangrove shoreline in the CHEU as most in-water construction projects require federal authorization.

Based on the recovery plan objectives, 95% of red mangrove habitat available at the time of the species listing, or approximately 5,236,704 lin ft of red mangrove habitat in the CHEU must be maintained and effectively protected to facilitate recovery of the smalltooth sawfish (0.95 x)5,512,320 lin ft = 5,236,704 lin ft (Table 4, Line 2). This requirement is based on the fact that although the CHEU is part of the larger Recovery Region G, and the 95% protection requirement applies across the areas within Recovery Regions G, H, and I, designated critical habitat is currently the only area in which nursery areas have been established and are being protected specifically for that purpose. The permanent loss of 80 lin ft of red mangrove habitat in addition to the loss of 24,286.65 lin ft since the species was listed results in a combined loss of 0.442040% of the estimated red mangrove habitat available at the time the species was listed (24,366.65 lin ft [80 lin ft + 24,286.65 lin ft]/5,512,320 lin ft = 0.442040%) (Table 4, Line 7). Thus, this loss, in combination with the losses since we listed the species, does not provide any impediment to achieving the recovery objective of effectively protecting 95% of the habitat available at the time the species was listed. In addition, while this loss is a reduction in the total area with those features currently available in the CHEU, it represents a tiny fraction of the overall habitat available, and will neither appreciably reduce the amount of available habitat nor appreciably diminish the functionality of the habitat in serving juvenile sawfish.

Impacts of the project on the other relevant recovery objective, juvenile abundance, is made difficult by the state of available data. Since both the designation of critical habitat and the release of the recovery plan in 2009, an ongoing study has been occurring in the CHEU. FWRI is conducting this study which is supported primarily under funding provided by NMFS through

⁴ Due to the small number of monthly projects affecting smalltooth sawfish critical habitat and the limited adverse impact from typical seawall/dock projects to critical habitat, NMFS updates losses quarterly.

the Section 6 Species Recovery Grants Program. Its intent is to determine the distribution, habitat use, and movement of juvenile sawfish in the CHEU. Given the limited duration (approximately 7+ years [September 2009-current]) of this study, there is not enough data to discern the trend in juvenile abundance within the CHEU or Recovery Region G. Early indications, however, are that juvenile sawfish are likely recovering in the CHEU, due in large part to ESA-listing of the species and critical habitat. Still, a significant amount of data needs to be analyzed in the near future to better determine to what extent juveniles are recovering. The action area is not documented as a hotspot for juveniles. Though species abundance is generally linked to habitat availability, we do not believe the loss of habitat associated with this project, in combination with the losses to date, will impede the 5% annual growth objective for the juvenile population in southwest Florida is reproducing and that the juvenile population trend is at least stable within the core range and possibly increasing—though variability is high (Carlson et al. 2007)(Carlson and Osborne 2012). Yet, it is too early to definitively state that juveniles are surviving to adulthood or that the population is recovering as a whole.

Based on the foregoing (summarized in Table 4), we conclude that the proposed action's adverse effects on the red mangrove essential feature of smalltooth sawfish critical habitat will not diminish the critical habitat's conservation value—supporting recruitment of juveniles into the adult population—or otherwise impede the recovery objectives for the species.

	Red Mangrove Shoreline in the CHEU	Linear Feet
1.	Available habitat in May 2003	5,512,320
2.	Available habitat that must be maintained (Recovery Plan)	5,236,704 (95% of 5,512,320)
3.	Habitat lost May 2003 to September 2009	11,276.65
4.Habitat lost September 2009 to December 31, 2016 (Section 7)*		
5.	Habitat remaining as of December 31, 2016*	5,488,033.35
6.	Habitat affected by this project	80
7	7 Habitat affected since species listing 24,366.65 (0.442040% of 5,512,320	
*Due to the small number of monthly projects affecting smalltooth sawfish critical habitat and the limited adverse impact from typical seawall/dock projects to critical habitat, NMFS updates losses quarterly.		

Table 4. Summary of Impacts to the Red Mangrove Essential Feature

9 CONCLUSION

After reviewing the current status of smalltooth sawfish critical habitat, the environmental baseline, and the cumulative effects, it is our Opinion that the loss of 260 ft² (0.00597 ac) of shallow, euryhaline habitat and the loss of 80 lin ft (80 ft²) of red mangrove from the seawall installation will not impede the critical habitat's ability to support the smalltooth sawfish's conservation, despite permanent adverse effects. Given the nature of the project and the information provided above, we conclude that the action, as proposed, is likely to adversely affect, but is not likely to destroy or adversely modify, smalltooth sawfish critical habitat.

10 INCIDENTAL TAKE STATEMENT

NMFS does not anticipate that the proposed action will incidentally take any species and no take is authorized. Nonetheless, any takes of smalltooth sawfish or sea turtles shall be immediately reported to takereport.nmfsser@noaa.gov. Refer to the present Biological Opinion by title (Marshall Seawall), issuance date, NMFS PCTS identifier number (SER-2017-18392), and USACE permit number (SAJ-2016-02974). At that time, consultation must be reinitiated.

11 CONSERVATION RECOMMENDATIONS

Section 7(a)(1) of the ESA directs federal agencies to utilize their authority to further the purposes of the ESA by carrying out conservation programs for the benefit of endangered and threatened species. Conservation recommendations identified in Biological Opinions can assist action agencies in implementing their responsibilities under Section 7(a)(1). Conservation recommendations are discretionary activities designed to minimize or avoid adverse effects of a proposed action on listed species or critical habitat, to help implement recovery plans, or to develop information. The following conservation recommendations are discretionary measures that NMFS believes are consistent with this obligation and therefore should be carried out by the federal action agency:

- 1. Continue public outreach and education on smalltooth sawfish and smalltooth sawfish critical habitat, in an effort to minimize interactions, injury, and mortality.
- 2. Provide funding to conduct directed research on smalltooth sawfish that will help further our understanding about the species (e.g., implement a relative abundance monitoring program which will help define how spatial and temporal variability in the physical and biological environment influence smalltooth sawfish) in an effort to predict long-term changes in smalltooth sawfish distribution, abundance, extent, and timing of movements.
- 3. Fund surveys of detailed bathymetry and mangrove coverage within smalltooth sawfish critical habitat. Lee County and the USACE recently funded such surveys within the Cape Coral municipality. Data is needed from other municipalities within the CHEU to establish a more accurate baseline assessment of both critical habitat features (red mangroves and shallow-water areas).
- 4. Fund and support restoration efforts that rehabilitate and create shallow, euryhaline and mangrove fringe habitats within the range of smalltooth sawfish.

To stay abreast of actions minimizing or avoiding adverse effects or benefitting listed species or their habitats, we request notification of the implementation of any conservation recommendations.

12 REINITIATION OF CONSULTATION

This concludes NMFS's formal consultation on the proposed action. As provided in 50 CFR 402.16, reinitiation of formal consultation is required where discretionary federal action agency involvement or control over the action has been retained, or is authorized by law, and if (1) the amount or extent of incidental take is exceeded, (2) new information reveals effects of the agency action on listed species or designated critical habitat in a manner or to an extent not considered in this Opinion, (3) the agency action is subsequently modified in a manner that causes an effect on the listed species or critical habitat not considered in this Opinion, or (4) a new species is listed or critical habitat designated that may be affected by the action.

13 LITERATURE CITED

- Andrews, T. J., B. F. Clough, and G. J. Muller. 1984. Photosynthetic gas exchange properties and carbon isotope ratios of some mangroves in North Queensland. Pages 15-23 *in* H. J. Teas, editor. Physiology and Management of Mangroves volume 9. Dr. W. Junk Publishers.
- Ball, M. C., M. J. Cochrane, and H. M. Rawson. 1997. Growth and water use of the mangroves *Rhizophora apiculata* and *R. stylosa* in response to salinity and humidity under ambient and elevated concentrations of atmospheric CO₂. Plant, Cell & Environment 20(9):1158-1166.
- Burchett, M. D., S. Meredith, A. Pulkownik, and S. Pulkownik. 1984. Short term influences affecting growth and distribution of mangrove communities in the Sydney region. Wetlands (Australia) 4(2):10.
- Cahoon, D. R., and coauthors. 2003. Mass Tree Mortality Leads to Mangrove Peat Collapse at Bay Islands, Honduras after Hurricane Mitch. Journal of Ecology 91(6):1093-1105.
- Carlson, J. K., and J. Osborne. 2012. Relative abundance of smalltooth sawfish (*Pristis pectinata*) based on the Everglades National Park Creel Survey, NOAA Technical Memorandum NMFS-SEFSC-626.
- Carlson, J. K., J. Osborne, and T. W. Schmidt. 2007. Monitoring the recovery of smalltooth sawfish, *Pristis pectinata*, using standardized relative indices of abundance. Biological Conservation 136(2):195-202.
- Dahl, T. E., and C. E. Johnson. 1991. Status and trends of wetlands in the conterminous United States, mid-1970s to mid-1980s. U.S. Fish and Wildlife Service, Washington, D.C.
- Ellison, J. 2010. Vulnerability of Fiji's mangroves and associated coral reefs to climate change. A review., Suva, Fiji, WWF South Pacific Office.
- Field, C. D. 1995. Impact of expected climate change on mangroves. Hydrobiologia 295(1-3):75-81.
- Garmestani, A. S., and H. F. Percival. 2005. Raccoon removal reduces sea turtle nest depredation in the ten thousand islands of Florida. Southeastern Naturalist 4(3):469-472.

- Gilman, E. L., J. Ellison, N. C. Duke, and C. Field. 2008. Threats to mangroves from climate change and adaptation options: A review. Aquatic Botany 89(2):237-250.
- Gilman, E. L., and coauthors. 2006. Adapting to Pacific Island mangrove responses to sea level rise and climate change. Climate Research 32:161-176.
- Gilmore, G. R. 1995. Environmental and Biogeographic Factors Influencing Ichthyofaunal Diversity: Indian River Lagoon. Bulletin of Marine Science 57(1):153-170.
- GMFMC. 1998. Generic amendment for addressing essential fish habitat requirements in the following Fishery Management plans of the Gulf of Mexico: Shrimp Fishery of the Gulf of Mexico, United States waters; Red Drum Fishery of the Gulf of Mexico, Reef Fish Fishery of the Gulf of Mexico, Coastal Migratory Pelagic Resources (Mackerel) in the Gulf of Mexico and South Atlantic; Stone Crab Fishery of the Gulf of Mexico; Spiny Lobster Fishery of the Gulf of Mexico; Coral and Coral Reefs of the Gulf of Mexico. Gulf of Mexico Fishery Management Council, Tampa, FL.
- GMFMC. 2005. Generic Amendment 3 for addressing EFH requirements, HAPCs, and adverse effects of fishing in the following FMPs of the Gulf of Mexico: Shrimp, Red Drum, Reef Fish, Stone Crab, Coral and Coral Reefs in the GOM and Spiny Lobster and the Coastal Migratory Pelagic resources of the GOM and South Atlantic. Gulf of Mexico Fishery Management Council, Tampa, FL.
- Harty, C. 2004. Planning Strategies for Mangrove and Saltmarsh Changes in Southeast Australia. Coastal Management 32(4):405-415.
- Hoegh-Guldberg, O., and coauthors. 2007. Coral reefs under rapid climate change and ocean acidification. Science 318(5857):1737-42.
- Hutchings, P. A., and P. Saenger. 1987. Ecology of Mangroves. St. Lucia, Queensland, Australia; New York: University of Queensland Press.
- IPCC. 2007. Climate Change 2007: Climate Change Impacts, Adaptation and Vulnerability. Summary for Policymakers. S. Solomon, and coeditors, editors. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the IPPC (Intergovernmental Panel on Climate Change). Cambridge University Press, Cambridge, UK and New York, NY.
- IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Pages 1535 in T. F. Stocker, and coeditors, editors. Cambridge University Press, Cambridge, United Kingdom; New York, NY.
- IPCC. 2014. Climate change 2014: Impacts, adaptation, and vulnerability. IPCC Working Group II contribution to AR5. Intergovernmental Panel on Climate Change.
- McLeod, E., and R. V. Salm. 2006. Managing mangroves for resilience to climate change. IUCN, Gland, Switzerland.

- Meehl, G. A., and coauthors. 2007. Global climate projections. Pages 747-846 *in* S. Solomon, and coeditors, editors. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY.
- Ning, Z. H., R. E. Turner, T. Doyle, and K. K. Abdollahi. 2003. Integrated Assessment of the Climate Change Impacts on the Gulf Coast Region: Findings of the Gulf Coast Regional Assessment.
- NMFS. 2000. Smalltooth Sawfish Status Review. National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southeast Regional Office, Saint Petrsburg, FL.
- NMFS. 2009. Smalltooth Sawfish Recovery Plan (*Pristis pectinata*). National Marine Fisheries Service, Silver Spring, Maryland.
- Norton, S. L., and coauthors. 2012. Designating Critical Habitat for Juvenile Endangered Smalltooth Sawfish in the United States. Marine and Coastal Fisheries 4(1):473-480.
- Orlando, S. P., Jr., and coauthors. 1994. Salinity Characteristics of South Atlantic Estuaries. NOAA, Office of Ocean Resources Conservation and Assessment, Silver Spring, MD.
- Pfeffer, W. T., J. T. Harper, and S. O'Neel. 2008. Kinematic Constraints on Glacier Contributions to 21st-Century Sea-Level Rise. Science 321(5894):1340-1343.
- Poulakis, G. R. 2012. Distribution, Habitat Use, and Movements of Juvenile Smalltooth Sawfish, *Pristis pectinata*, in the Charlotte Harbor Estuarine System, Florida. Florida Institute of Technology, Melbourne, FL.
- Poulakis, G. R., and J. C. Seitz. 2004. Recent occurrence of the smalltooth sawfish, *Pristis pectinata* (Elasmobranchiomorphi: Pristidae), in Florida Bay and the Florida Keys, with comments on sawfish ecology. Florida Scientist 67(27):27-35.
- Poulakis, G. R., P. W. Stevens, A. A. Timmers, C. J. Stafford, and C. A. Simpfendorfer. 2013. Movements of juvenile endangered smalltooth sawfish, *Pristis pectinata*, in an estuarine river system: use of non-main-stem river habitats and lagged responses to freshwater inflow-related changes. Environmental Biology of Fishes 96(6):763-778.
- Poulakis, G. R., P. W. Stevens, A. A. Timmers, T. R. Wiley, and C. A. Simpfendorfer. 2011. Abiotic affinities and spatiotemporal distribution of the endangered smalltooth sawfish, *Pristis pectinata*, in a south-western Florida nursery. Marine and Freshwater Research 62(10):1165-1177.
- Quigley, D. T. G., and K. Flannery. 2002. Leucoptic harbour porpoise *Phocoena phocoena* (L.). Irish Naturalists' Journal 27(4):170.

- Rahmstorf, S., and coauthors. 2009. Recent climate observations compared to projections. Science 316(5825):709.
- Reddering, J. S. V. 1988. Prediction of the effects of reduced river discharge on estuaries of the south-eastern Cape Province, South Africa. South African Journal of Science 84:726-730.
- Saenger, P., and J. Moverley. 1985. Vegetative phenology of mangroves along the Queensland coastline. Pages 9 *in* M. G. Ridpath, and L. K. Corbett, editors. Ecology of the wet-dry tropics: Proceedings of a joint symposium with the Australian Mammal Society in association with the Darwin Institute of Technology. Blackwell Scientific Book Distributors, Melbourne.
- SAFMC. 1998. Final Plan for the South Atlantic Region: Essential Fish Habitat Requirements for the Fishery Management Plan of the South Atlantic Fishery Management Council. South Atlantic Fishery Management Council, Charleston, SC.
- Scavia, D., and coauthors. 2002. Climate change impacts on US coastal and marine ecosystems. Estuaries 25(2):149-164.
- Semeniuk, V. 1994. Predicting the Effect of Sea-Level Rise on Mangroves in Northwestern Australia. Journal of Coastal Research 10(4):1050-1076.
- Simpfendorfer, C. A. 2001. Essential habitat of the smalltooth sawfish (*Pristis pectinata*). Report to the National Fisheries Service's Protected Resources Division. Mote Marine Laboratory Technical Report.
- Simpfendorfer, C. A. 2003. Abundance, movement and habitat use of the smalltooth sawfish. Final Report. Mote Marine Laboratory Mote Technical Report No. 929, Sarasota, FL.
- Simpfendorfer, C. A. 2006. Movement and habitat use of smalltooth sawfish. Final Report. Mote Marine Laboratory, Mote Marine Laboratory Technical Report 1070, Sarasota, FL.
- Simpfendorfer, C. A., G. R. Poulakis, P. M. O'Donnell, and T. R. Wiley. 2008. Growth rates of juvenile smalltooth sawfish, *Pristis pectinata* (Latham), in the western Atlantic. Journal of Fish Biology 72(3):711-723.
- Simpfendorfer, C. A., T. R. Wiley, and B. G. Yeiser. 2010. Improving conservation planning for an endangered sawfish using data from acoustic telemetry. Biological Conservation 143:1460-1469.
- Simpfendorfer, C. A., and coauthors. 2011. Environmental Influences on the Spatial Ecology of Juvenile Smalltooth Sawfish (*Pristis pectinata*): Results from Acoustic Monitoring. PLoS ONE 6(2):e16918.
- Snedaker, S. 1995. Mangroves and climate change in the Florida and Caribbean region: scenarios and hypotheses. Hydrobiologia 295(1-3):43-49.

- Stedman, S., and T. E. Dahl. 2008. Status and trends of wetlands in the coastal watersheds of the Eastern United States 1998-2004. National Oceanic and Atmospheric Administration, National Marine Fisheries Service, and U.S. Department of the Interior, U.S. Fish and Wildlife Service.
- Trenberth, K. 2005. Uncertainty in Hurricanes and Global Warming. Science 308(5729):1753-1754.
- UNESCO. 1992. Coastal systems studies and sustainable development. Pages 276 *in* COMAR Interregional Scientific Conference. UNESCO, Paris, 21-25 May, 1991.
- USEPA. 1994. Freshwater Inflow Action Agenda For The Gulf of Mexico; First Generation-Management Committee Report. U.S. Environmental Protection Agency.
- USFWS. 1999. South Florida Multi-Species Recovery Plan Atlanta, Georgia. 2172p.
- Vargas-Moreno, J. C., and M. Flaxman. 2010. Addressing the Challenges of Climate Change in the Greater Everglades Landscape. Massachusetts Institute of Technology, Cambridge, MA.
- Wanless, H. R., B. M. Vlaswinkel, and K. L. Jackson. 2005. Coastal Landscape and Channel Evolution Affecting Critical Habitats at Cape Sable, Everglades National Park, Florida. University of Miami.
- Whitfield, A. K., and M. N. Bruton. 1989. Some biological implications of reduced freshwater inflow into eastern Cape estuaries: a preliminary assessment. South African Journal of Science 85:691-694.
- Wiley, T. R., and C. A. Simpfendorfer. 2007. The ecology of elasmobranchs occurring in the Everglades National Park, Florida: implications for conservation and management. Bulletin of Marine Science 80(1):171-189.